martes, 14 de marzo de 2023

Un producto infinito para la constante de Ludolph van Ceulen

Consideremos el producto infinito $$ \left(1- \frac{1}{3}+\frac{1}{3^{2}}-\cdots\right) \left(1+\frac{1}{5}+\frac{1}{5^{2}}+\cdots\right) \left(1-\frac{1}{7}+\frac{1}{7^{2}}-\cdots\right)\cdots$$ Dentro de un par de paréntesis hay alternancia de signos si y sólo el número primo que lidera a los paréntesis respectivos es congruente con $-1$ módulo $4$. Al considerar el producto de los primeros $n$ factores de ese producto infinito, los términos que se obtienen son de la forma $$ \pm \frac{1}{p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}} $$ donde $p_{1}, \ldots, p_{n}$ son los primeros $n$ números primos impares y $e_{1}, \ldots, e_{n}$ son números enteros no negativos. El signo de un término dado es negativo si y sólo si la suma de los exponentes de los primos congruentes con $-1$ módulo $4$ que aparecen en la expresión $p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}$ es un número impar. Puesto que todo número entero positivo $N>1$ se puede expresar como un producto de potencias de números primos de manera única (salvo el orden de las potencias), al desarrollar el producto infinito aparecerán como denominadores todos los números impares exactamente una vez. Tenemos así que \begin{eqnarray*}\left(1- \frac{1}{3}+\cdots\right) \left(1+\frac{1}{5}+\cdots\right)\left(1-\frac{1}{7}+\cdots\right) \cdots &=& 1- \frac{1}{3}+\\ && \frac{1}{5}-\frac{1}{7}+\cdots \end{eqnarray*} Luego, en vista de que $$ 1-\frac{1}{p}+\frac{1}{p^{2}} - \cdots = \frac{p}{p+1},$$ $$ 1+\frac{1}{p}+\frac{1}{p^{2}} + \cdots = \frac{p}{p-1}$$ y $$ 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\cdots = \frac{\pi}{4},$$ se concluye que \begin{eqnarray*}\frac{\pi}{4} = \frac{3}{4} \cdot \frac{5}{4} \cdot \frac{7}{8} \cdot \frac{11}{12} \cdot \frac{13}{12} \cdots \end{eqnarray*} La identidad es fácil de recordar pues, en la derecha, los numeradores son todos los números primos impares listados en su orden natural mientras que el denominador del primo $p$ es igual a $p+1$ cuando $p \equiv -1 \pmod{4}$ e igual a $p-1$ cuando $p \equiv 1 \pmod{4}$.

NOTA. La primera vez que vi este producto infinito para $\pi$ fue en las páginas del libro Alberto Barajas: su oratoria, sus matemáticas y sus enseñanzas (SMM & IMATE UNAM, 2010); no obstante, recuerdo haberlo encontrado después en algún otro texto de teoría de números. Espero volver a dar con esa obra más adelante; por ahora sólo me queda reiterarles mis mejores deseos (atrasados) por el Día de Pi 2023... ¡Hasta la próxima!

1 comentario:

Anónimo dijo...

José Hdz.Stgo no debe preocuparse por lo del Día Pi, porque ya Leonardo A. Casallas en Colombia resolvió este número (2016) en el libro "Pi cómo te Atrapé" al hallar el racional 3,1375 que es igual a ,251/80 informes en pipatodos@gmail.com