viernes, 27 de marzo de 2015

Los problemas de matemáticas y mis problemas*

Ayer por la tarde, apenas acababa de sentarme a estudiar cuando llegó Licha mi hermana y me dijo:

—Toño, me dejaron un problema y no puedo resolverlo. Ayúdame, ¿quieres?

Así por encimita le eché un vistazo al problema y pensé en el compromiso tan grande que me echaba si no podía resolverlo porque perdería inmediatamente mi autoridad. Por eso le dije a Licha:

—Mira, ahorita no puedo ayudarte porque tengo mucho que estudiar. Vete a jugar un rato y cuando vuelvas te ayudaré con mucho gusto—así, pensé, mientras ella juega yo resuelvo el problema y luego se lo explico.

En cuanto Licha salió cogí su libreta y leí:

"Un niño y una niña fueron al bosque a buscar nueces. Recogieron 120 en total. La niña recogió la mitad de las que recogió el niño. ¿Cuántas nueces tenía el niño y cuántas la niña?"

Cuando terminé de leerlo hasta me dio risa: ¡uy, qué problemas les ponen en tercero!—pensé—. ¡Pero sí está todo clarísimo! Hay que dividir 120 entre 2 y resultarán 60. Luego, la niña recogió 60 nueces. Ahora hay que averiguar cuántas recogió el niño; de 120 me quitan 60, quedan otras 60. A ver, a ver, ¿cómo está esto? Así resulta que los dos recogieron la misma cantidad de nueces, pero el problema dice que la niña recogió la mitad de las que recogió el niño. ¡Ah! Entonces hay que dividir 60 entre 2 y tendremos 30. Luego, el niño recogió 60 nueces y la niña 30. Pero 60 y 30 son 90 y el problema dice que entre los dos recogieron 120 nueces.

—¡Pero que ocurrencia poner en tercer año un problema que no se puede resolver ni en cuarto!—pensé—. Eso es una injusticia...—la verdad era que sentía vergüenza de no poder resolverlo, pues Licha diría: "¿Ves? Estás en cuarto año y no puedes resolver un problema de tercero". Tenía que resolverlo a como diera lugar. Me puse a pensar de nuevo, pero no se me ocurrían otras soluciones. ¡Ya me había hecho bolas! Bueno, eran 120 nueces en total, y había que dividirlas de manera que el niño tuviera dos veces más que la niña. Desesperado, dibujé un nogal en el cuaderno, al pie del nogal una niña y un niño, y en el árbol 120 bolitas, que eran las nueces. Pero hasta ahí llegaba. Después, me puse yo a recoger nueces, es decir, a borrarlas del árbol y dárselas a los niños, dibujándoselas encima de la cabeza. Luego se me ocurrió que se las habían guardado en los bolsillos.

El niño tenía dos bolsillos en el pantalón y la niña sólo uno en su delantal. Entonces pensé que por eso la niña había recogido menos nueces que su hermano.

Estaba sentado, mirándolos: él tenía dos bolsillos, ella sólo uno. Y la cabeza empezó a despejárseme. Borré las nueces de encima de sus cabezas y dibujé de nuevo los bolsillos, pero esta vez eran unos bolsillos muy abultados, como si estuvieran llenos de nueces. Ahora las 120 nueces estaban dentro de los tres bolsillos. Entonces vi todo claro. ¡Cómo no se me había ocurrido antes! ¡Las 120 nueces había que dividirlas en tres partes! La niña toma una parte y el niño las partes restantes, es decir, dos veces más que la niña. Dividí rápidamente 120 entre 3 y resultó 40, las que tenía la niña. Y como el niño tenía el doble que ella, resultó que 40 más 40 daba 80. Luego sumé 80 y 40 y ¡eran las 120 nueces completitas!

Poco después regresó Licha e inmediatamente me puse a explicarle el problema. Le dibujé las nueces, los niños y sus bolsillos abultados.

—¡Qué bien explicas tú los problemas, Toño! Yo sola nunca habría sabido cómo hacerlo.

—Éste es un problema retefácil. Cuando te pongan uno más difícil me lo dices y yo te lo explico en un momento.

Entonces como que me envolvió una cosa muy bonita, como que me sentí muy importante de ver que yo podía ayudar a mi hermana a resolver sus problemas de matemáticas.

* Un cuento del escritor soviético Nikolái Nosov—adaptado al español por Armida de la Vara... Esta adaptación ha sido retomada del libro Español (Ejercicios y Lecturas) - Cuarto Grado, el cual estuvo vigente en México desde algún momento en los años 80 y hasta mediados de los años 90 (aproximadamente).

3 comentarios:

Octavio Agustin dijo...

Así es, mi amigo, excelentes libros aquellos.

A mí me encanta referir cómo leía en uno de ellos una "demostración" de la fórmula del área del círculo, dividiéndolo en sectores y rearmando con ellos una figura que, finalmente, tendría que *ser* un rectángulo.

Si no mal recuerdo, su perspectiva para la fórmula del perímetro era tomar muchos círculos (tapas, monedas, etcétera), medir con cinta métrica su circunferencia y cotejarla contra su diámetro. Nunca nos lo hizo realizar la maestra, pero entendí el punto inmediatamente.

Por cierto que en esa misma bitácora encontré otra entrada relacionada con la matemática (aunque más tangencialmente)

http://librosdeprimaria80s.blogspot.mx/2012/10/una-amarga-experiencia-espanol-ej-y-lec.html#more

y otra que reproduce un truco que según yo había conocido primero con Martin Gardner

http://librosdeprimaria80s.blogspot.mx/2012/02/matematicas-3er-grado.html

aunque, ahora que lo reflexiono, no es tan simplista como representar números en base 2. Rascándole más, veo que el libro hace ni más ni menos que introducir la única partición perfecta del 26. ¡Órale! Lástima que mis maestros de primaria no estaban conscientes de esto, y resalta lo profético que es el último párrafo de esa página.

J. H. Stgo dijo...

¡No había visto ese truco! Te debo una, hermanazo...

Alexander Israel Flores Gutiérrez dijo...

Claro: 120 = 3(40) = 40 + 2(40)