«In the time of Euclid, and for over two thousand years thereafter, the postulates of geometry were thought of as self-evident truths about physical space; and geometry was thought of as a kind of purely deductive physics. Starting with the truths that were self-evident, geometers considered that they were deducing other and more obscure truths without the possibility of error. (Here, of course, we are not counting the casual errors of individuals, which in mathematics are nearly always corrected rather promptly.) This conception of the enterprise in which geometers were engaged appeared to rest on firmer and firmer ground as the centuries wore on. As the other sciences developed, it became plain that in their earlier stages they had fallen into fundamental errors. Meanwhile the "self-evident truths" of geometry continued to look like truths, and also continued to seem self-evident.

With the development of hyperbolic geometry, however, this view became untenable. We then had two different, and mutually incompatible, systems of geometry. Each of them was mathematically self-consistent, and each of them was compatible with our observations of the physical world. From this point on, the whole discussion of the relation between geometry and physical space was carried on in quite different terms. We now think not of a unique, physically "true" *geometry*, but of a number of mathematical *geometries*, each of which may be a good or bad approximation of physical space, and each of which may be useful in various physical investigations. Thus we have lost our faith not only in the idea that simple and fundamental truths can be relied upon to be self-evident, but also in the idea that geometry is an aspect of physics.

**This philosophical revolution** is reflected, oddly enough, in the differences between the early passages of the Declaration of Independence and the Gettysburg Address. Thomas Jefferson^{1} wrote:

"... We hold these truths to be self-evident, that all men are created equal, that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty and the pursuit of Happiness..."

The spirit of these remarks is Euclidean. From his postulates, Jefferson went on to deduce a nontrivial theorem, to the effect that the American Colonies had the right to establish their independence by force of arms.

Lincoln spoke in a quite different style:

"Fourscore and seven years ago our fathers brought forth on this continent a new nation, conceived in liberty and dedicated to the proposition that all men are created equal."

Here Lincoln is referring to one of the propositions mentioned by Jefferson, but he is not claiming, as Jefferson did, that this proposition is self-evidently true, or even that it is true at all. He refers to it merely as a proposition to which a certain nation was dedicated. Thus, to Lincoln, this proposition is a *description* of a certain aspect of the United States (and, of course, an aspect of himself). (I am indebted for this observation to **Lipman Bers**.)

This is not to say that Lincoln was a reader of Lobachevsky, [János] Bolyai or Gauss, or that he was influenced, even at several removes, by people who were. It seems more likely that a shift in philosophy had been developing independently of the mathematicians, and that this helped to give mathematicians the courage to undertake non-Euclidean investigations and publish the results.

At any rate, **modern mathematicians use postulates in the spirit of Lincoln**. **The question whether the postulates are** **"true"** **does not even arise**. Sets of postulates are regarded merely as *descriptions* of mathematical structures. Their value consists in the fact that they are practical aids in the study of the mathematical structures that they describe...»

I've excerpted these paragraphs (emphasis in bold was mine) from:

EDWIN E. MOISE, *Elementary geometry from an advanced standpoint*. Addison-Wesley Publishing Company, Inc. Second Printing, March 1964, USA, pp. 382-383.

Incidentally, as I was browsing through some of the past volumes of *The American Mathematical Monthly* the other day, I found on page 776 of the eighth issue of vol. 99 of that periodical a letter from an Alberto Guzmán (Dept. of Mathematics, City College of CUNY) to the *Monthly* Editors wherein Mr. Guzmán mentions that it was Alvin Hausner the one who called his attention to the fact that the change in viewpoint, “from accepting axioms as obvious truths to stipulating them as working assumptions”, was reflected in the Declaration of Independence and the Gettysburg Address. Mr. Guzmán wrote that letter because, in the first issue of the said volume of the *Monthly*, there appeared an article by Abe Shenitzer that touched upon the nineteenth-century change of standpoint in question and it, presumably, refreshed his memory on what Hausner had told him about the matter once. It has to be noted, however, that in the missive there was no mention whatsoever to either Lipman Bers or the paragraphs by Edwin Moise showcased above: the corollary being that even the *Monthly* Editors nod off sometimes.

The aforecited excerpts are also interesting because it is known that Lincoln was at some point in his life an avid reader of Euclid. Some of his phrases—such as "dedicated to the proposition" in the Gettysburg Address—sound as though they ultimately came from his reading of Euclid. In addition, Lincoln is said to have spoken once thus^{2}:

"... In the course of my law-reading I constantly came upon the word

demonstrate. I thought, at first, that I understood its meaning, but soon became satisfied that I did not. I said to myself, 'What do I do when Idemonstratemore than when Ireasonorprove? How doesdemonstrationdiffer from any other proof?' I consulted Webster's Dictionary. That told of 'certain proof,' 'proof beyond the possibility of doubt;' but I could form no idea what sort of proof that was. I thought a great many things were proved beyond a possibility of doubt, without recourse to any such extraordinary process of reasoning as I understood 'demonstration' to be. I consulted all the dictionaries and books of reference I could find, but with no better results. You might as well have definedblueto a blind man. At last I said, 'Lincoln, you can never make a lawyer if you do not understand whatdemonstratemeans;' and I left my situation in Springfield, went home to my father's house, and staid there till I could give any proposition in the six books of Euclid at sight. I then found out what 'demonstrate' means, and went back to my law studies."

The following comments by Salomon Bochner in “The Role of Mathematics in the Rise of Science” (Princeton University Press, 4th printing, Princeton NJ, USA, 1981, p. 37.) provide us with additional references on Lincoln's interest in Euclidean geometry:

“... Abraham Lincoln, in his campaign biography of 1860, written by himself and published under the name of John L. Scripps of the Chicago Press and Tribune, ventured to assert about himself that 'he studied and nearly mastered the six [sic] books of Euclid since he was a member of Congress.' (

The Collected Works of Abraham Lincoln, The Abraham Lincoln Association, Springfield, Illinois (Rutgers University Press, 1953), IV, 62.) Lincoln's assertion that he had 'nearly mastered' these books was one of the boldest and blandest campaigns statements in the annals of the American presidential elections, and folkloristic embellishments of this assertion were even less restrained. (See Herndon'sLife of Lincoln(The World Publishing Company, 1949); Carl Sandburg,Abraham Lincoln, The Prairie Years(Harcourt, Brace & Co., 1926), I, 423-424; Emanuel Hertz,Lincoln Talks(Viking, 1936), p. 18.) It is worth reflecting on the fact that in the America of 1860 a consummate grassroots politician of the then Mid-Western Frontier should have thought that adding to a mixture of log cabin and rail-splitting a six books worth of Euclid would make the mixture more palatable to an electorate across the country.”

Last but not least, I would like to add that Lincoln's devotion to Euclid was exploited in a scene of Steven Spielberg's 2012 movie on the Great Emancipator. As the Hindu mathematician Bhāskara would say (or so the legend has it), BEHOLD! ^{3}

P.S. Please, feel free to enter below any observation, suggestion, criticism, etc. you may have for the owner/writer of this blog regarding this entry...

______________^{1} Jennnifer Schuessler (July 3, 2014). If only Thomas Jefferson could settle the issue (A period is questioned in the Declaration of Independence). *The New York Times, p. A1.*

^{2} Rev. J. P. Gulliver (September 4, 1864). Mr.
Lincoln's early life: How he educated himself. *The New York Times*.

^{3} Be warned, though, that the short speech which *Spielrock*'s Lincoln speaks in this scene is inaccurate in two or three respects.

## No hay comentarios.:

Publicar un comentario